Approximation of hidden Markov models by mixtures of experts with application to particle filtering

نویسندگان

  • Jimmy Olsson
  • Jonas Ströjby
چکیده

Selecting conveniently the proposal kernel and the adjustment multiplier weights of the auxiliary particle filter may increase significantly the accuracy and computational efficiency of the method. However, in practice the optimal proposal kernel and multiplier weights are seldom known. In this paper we present a simulation-based method for constructing offline an approximation of these quantities that makes the filter close to fully adapted at a reasonable computational cost. The approximation is constructed as a mixture of experts optimised through an efficient stochastic approximation algorithm. The method is illustrated on two simulated examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Particle filtering with pairwise Markov processes

The estimation of an unobservable process x from an observed process y is often performed in the framework of Hidden Markov Models (HMM). In the linear Gaussian case, the classical recursive solution is given by the Kalman filter. On the other hand, particle filters are Monte Carlo based methods which provide approximate solutions in more complex situations. In this paper, we consider Pairwise ...

متن کامل

Particle Filtering in Pairwise and Triplet Markov Chains

The estimation of an unobservable process x from an observed process y is often performed in the framework of Hidden Markov Models (HMM). In the linear Gaussian case, the classical recursive solution is given by the Kalman filter. On the other hand, particle filters provide approximate solutions in more complex situations. In this paper, we propose two successive generalizations of the classica...

متن کامل

Introducing Busy Customer Portfolio Using Hidden Markov Model

Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...

متن کامل

Variance estimation in the particle filter

Variance estimation in the particle filter Particle filters provide sampling based approximations of marginal likelihoods and filtering expectations in hidden Markov models. However, estimating the Monte Carlo variance of these approximations, without generating multiple independent realizations of the approximations themselves, is not straightforward. We present an unbiased estimator of the va...

متن کامل

Spatial Latent Gaussian Models: Application to House Prices Data in Tehran City

Latent Gaussian models are flexible models that are applied in several statistical applications. When posterior marginals or full conditional distributions in hierarchical Bayesian inference from these models are not available in closed form, Markov chain Monte Carlo methods are implemented. The component dependence of the latent field usually causes increase in computational time and divergenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010